Posts

Announcing Cedexis Netscope: Advanced Network Performance and Benchmarking Analysis

The Cedexis Radar community collects tens of billions of real user monitoring data points each day, giving Cedexis users unparalleled insight into how applications, videos, websites, and large file downloads are actually being experienced by their users. We’re excited to announce a product that offers a new lens into the Radar community dynamic data set: Cedexis Netscope.

Know how your service stacks up, down to the IP subnet
Metrics like network throughput, availability, and latency don’t tell the whole story of how your service is performing, because they are network-centric, not user-centric: however comprehensively you track network operations, what matters is the experience at the point of consumption. Cedexis Netscope provides you with additional user-centric context to assess your service, namely the ability to compare your service’s performance to the results of the “best” provider in your market. With up-to-date Anonymous Best comparative data, you’ll have a data-driven benchmark to use for network planning, marketing, and competitive analysis.

Highlight your Service Performance:

  • Relative to peers in your markets
  • In specific geographies
  • Compared with specific ISPs
  • Down to the IP Sub-net
  • Including both IPv4 and IPv6 addresses
  • Comprehensive data on latency or throughput
  • Covering both static and dynamic delivery

Actionable insights
Netscope provides detailed performance data that can be used to improve your service for end users. IT Ops teams can use automated or custom reports to view performance from your ASN versus peer groups in the geographies you serve. This lets you fully understand how you stack up versus the “best” service provider, using the same criteria. Real-time logs organized by ASN can be used to inform instant service repairs or for longer-term planning.

Powered by: the world’s largest user experience community
Real User Monitoring (RUM) means fully understanding how internet performance impacts customer satisfaction and engagement. Cedexis gathers RUM data from each step between the client and any of the clouds, data centers, and CDNs hosting your applications to build a holistic picture of internet health. Every request creates more data, continuously updating this unique real-time virtual map of the web.

Data and alerts, your way
To effectively evaluate your service and enable real-time troubleshooting, Netscope lets you roll up data by the ASN, country, region, or state level. You can zoom in within a specific ASN at the IP subnet level, to dissect the data in any way your business requires. This data will be stored in the cloud on an ongoing basis. Netscope also allows users to easily set up flexible network alerts for performance and latency deviations.

Netscope helps ISP Product Managers and Marketers better understand:

  • How well users connect to the major content distributors
  • How well users/business connect to public clouds (AWS, Google Cloud, Azure, etc.)
  • When, where, and how often outages and throughput issues happen
  • What happens during different times of day
  • Where are the risks during big events (FIFA World Cup, live events, video/content releases)
  • How service on mobile looks versus web
  • How the ISP stacks up v. ”the best” ISP  in the region

Bring Advanced Network analysis to your network
Netscope provides a critical data set you need for your network planning and enhancement. With its real-time understanding of worldwide network health, Netscope gives you the context and actionable data you need to delight customers and increase your market share.

Ready to use this data with your team?

Set up a demo today

 

Cedexis Solves Avoidable Outages in Real-Time

Portland, Ore. – August 15, 2017 Cedexis, the leader in crowd-optimized application and content delivery for clouds, CDNs and data centers, today announced the release of its connected Sonar service, which uses low-latency synthetic monitoring to eliminate costly and avoidable outages by ensuring consistent application delivery. Providing exceptional quality of experience (QoE) to application consumers by eliminating outages and slowdowns is at the heart of building a profitable and sustainable cloud-native service, but has proven to be an elusive goal.

Synthetic monitoring uses programmed requests of customer-designated endpoints to validate, on an ongoing basis, that those endpoints are available for use. Until now, the marketplace has offered only two substantial choices:

  • Implement disconnected synthetic monitoring, which requires manual intervention when problems arise. The time from anomaly detection to resolution can range from minutes to hours, often resulting in prolonged outages and slowdowns.
  • Implement cloud vendor-specific synthetic monitoring, which delivers automatic intervention when problems arise. The time from anomaly detection to resolution is measured in just minutes, but is generally restricted to re-routing within that vendor’s cloud infrastructure, resulting in shorter, but still meaningful, outages and slowdowns.

With the release of Sonar, there is now a third, and more effective, option:

  • Implement Sonar connected synthetic monitoring, which delivers an automatic intervention when problems arise. The time from anomaly detection to resolution is measured in just seconds, and traffic can be re-routed across and between substantially any infrastructure (from data center to hosting facility to cloud provider), resulting in the elimination of most outages and slowdowns entirely.

Sonar is able to reduce the MTTR (mean time to repair) – and thus prevent consumer-visible outages and slowdowns – automatically owing to two key characteristics:

  1. Sonar is connected to the broader Cedexis application delivery platform. As such, the data that is collected automatically flows into the Openmix global traffic manager, which is able to adjust its traffic routing decisions in just seconds.
  2. Sonar is configurable to run endpoint tests as frequently as every two seconds, providing up-to-date telemetry moving at the speed of the Internet. By contrast, cloud vendor-specific solutions often limit their testing frequency to 30 – 120 second intervals – far from sufficient to contend with rapidly-evolving global network conditions.

“Synthetic monitoring data, as a core input to traffic routing decisions, must be accurate, frequent, and rapidly integrated into algorithms,” said Josh Gray, Chief Architect at Cedexis. “However, data is only as valuable as the actions that it can automatically activate. Updating traffic routing in just seconds is the key to making outages a thing of the past and ensuring unparalleled user experience.”

The updated Sonar synthetic monitoring service enhances the industry-leading actionable intelligence that already powers the Openmix global traffic management engine. The Cedexis application delivery platform (ADP) uniquely uses three different sources of actionable data to ensure the smoothest internet traffic logistics:

  • Radar: the world’s largest community of instantaneous user experience data
  • Fusion: the powerful 3rd party data ingestion tool that makes APM, Local Load Balancer, Cloud metrics, and any other dataset actionable in delivery logic
  • Sonar: a massively scalable and architecture-agnostic synthetic testing tool that is immune to the latency issues of proprietary cloud tools

“No global traffic management platform can provide reliable, real-time traffic shaping decisions without access to accurate, actionable data,” noted Ryan Windham, Cedexis CEO. “The evolution of Sonar to provide industry-leading latency levels confirms our commitment to delivering an end to avoidable outages.”

Live and Generally Available: Impact Resource Timing

We are very excited to be officially launching Impact Resource Timing (IRT) for general availability.

IRT is Impact’s powerful window into the performance of different sources of content for the pages in your website. For instance, you may want to distinguish the performance of your origin servers relative to cloud sources, or advertising partners; and by doing so, establish with confidence where any delays stem from. From here, you can dive into Resource Timing data sliced by various measurements over time, as well as through a statistical distribution view.

What is Resource Timing? Broadly speaking, resource timing measures latency within an application (i.e. browser). It uses JavaScript as the primary mechanism to instrument various time-based metrics of all the resources requested and downloaded for a single website page by an end user. Individual resources are objects such as JS, CSS, images and other files that the website pages requests. The faster the resources are requested and loaded on the page, the better quality user experience (QoE) for users.  By contrast, resources that cause longer latency can produce a negative QoE for users.  By analyzing resourcing timing measurements, you can isolate the resources that may be causing degradation issues for your organization to fix.  

Resource Timing Process:

Cedexis IRT makes it easy for you to track resources from identified sources, normally identified through domain (*.myDomain.com), by sub-domain(e.g. images.myDomain.com), and by the provider serving your content. In this way, you can quickly group together types of content, and identify the source of any latency. For instance, you might find that origin-located content is being delivered swiftly, while cloud-hosted images are slowing down the load time of your page; in such a situation, you would now be in a position to consider a range of solutions, including adding a secondary cloud provider and a global server load balancer to protect QoE for your users.

Some benefits of tracking Resource Timing.

  • See which hostnames  – and thus which classes of content – are slowing down your site.
  • Determine which resources impact your overall user experience.
  • Correlate resource performance with user experience.

Impact Resource Timing from Cedexis allows you to see how content sources are performing across various measurement types such as Duration, TCP Connection Time, and Round Trip Time. IRT reports also give you the ability to drill down further by Service Providers, Locations, ISPs, User Agent (device, browsers, OS) and other filters.

Check out our User Guide to learn more about our Measurement Type calculations.

There are two primary reports in this release of Impact Resource Timing. The Performance report, which gives you a trending view of resource timing over time and the Statistical Distribution report, which reports Resource Timing data through a statistical distribution view.  Both reports have very dynamic reporting capabilities that allow you to easily pinpoint resource-related issues for further analysis.  


Using the Performance report, you can isolate which grouped resources are causing potential end user experience issues by hostname, page or service provider and when the issue happened. Drill down even further to see if this was a global issue or localized to a specific location or if it was by certain user devices or browsers.  

IRT is now available for all in the Radar portal – take it for a spin and let us know your experiences!

Why The Web Is So Congested

If you live in a major city like London, Tokyo, or San Francisco, you learn one thing early: driving your car through the city center is about the slowest possible way to get around. Which is ironic, when you think about it, as cars only became popular because they made is possible to get around more quickly. There is, it seems, an inverse relationship between efficiency and popularity, at least when it comes to goods that pass through a public commons like roads.

Or like the Internet.

Think about all that lovely 4K video you could be consuming if there was nothing between you and your favorite VOD provider but a totally clear fiber optic cable. But unless you live in a highly over-provisioned location, that’s exactly not what’s going on; rather, you’re lucky to get a full HD picture, and even luckier if it stays at 1080p, without buffering, all the way through. Why? Because you’re sharing a public commons – the Internet – and its efficiency is being chewed away by popularity.

Let’s do some math to illustrate this,

  • Between 2013 and January 2017 the number of web users increased by 1.4 billion people to just over 3.7 billion. Today Internet penetration is at 50% (or put another way – half the world isn’t online yet)
  • In 2013, the average amount of Internet data per person was 7.9G per month; by 2015 it was 9.9G, with Cisco expecting it to reach over 25Gb by 2020 – so assume something in the range of 15Gb by 2017.
  • Logically, then in 2013 web traffic would have been around 2.3B * 7.9G per months (18.1t exabytes), by 2015 it would have been  3.7B * 17Gb per month (62.9 exabytes)
  • If we assume another billion Internet users by 2020, we’re looking at 4.7B & 25Gb per month – or a full 117.5 exabytes

In just seven years, the monthly web traffic will have grown 600% (based on the math, anyway: Cisco is estimating closer to 200 exabytes monthly by 2020).

And that is why the web is so busy.

But it doesn’t describe why the web is congested. Congestion happens when there is more traffic than transit space – which is why, as cities get larger and more populous, governments add lanes to major thoroughfares, meeting the automobile demand with road supply.

Unfortunately, unlike cars on roads, Internet traffic doesn’t travel in straight lines from point to point. So even though infrastructure providers have been building out capacity at a madcap pace, it’s not always connected in such a way that makes transit efficient. And, unlike roads, digital connections are not built out of concrete, and often become unavailable – sometimes for a long time that causes consternation and PR challenges, and sometimes just for a minute or so, stymying a relative handful of customers.

For information to get from A to B, it has to traverse any number of interconnected infrastructures, from ISPs to the backbone to CDNs, and beyond. Each is independently managed, meaning that no individual network administrator can guarantee smooth passage from beginning to end. And with all the traffic that has been – and will continue to be – added to the Internet, it has become essentially a guarantee that some portion of content requests will bump into transit problems along the way.

Let’s also note that the modern Internet is characterized less by cat memes, and more by the delivery of information, functionality, and ultimately, knowledge. Put another way, the Internet today is all about applications: whether represented as a tile on a smart phone home screen, or as a web interface, applications deliver the intelligence to take the sum total of all human knowledge that is somewhere on the web and turn it into something we can use. When you open social media, the app knows who you want to know about; when you consult your sports app, it knows which teams you want to know about first; when you check your financial app, it knows how to log you in from a fingerprint and which account details to show first. Every time that every app is asked to deliver any piece of knowledge, it is making requests across the Internet – and often multiple requests of multiple sources. Traffic congestion doesn’t just endanger the bitrate of your favorite sci fi series – it threatens the value of every app you use.

Which is why real-time predictive traffic routing is becoming a topic that web native businesses are digging deeper into. Think of it as Application Delivery for the web – a traffic cop that spots congestion and directs content around it, so that it’s as though it never happened. This is the only way to solve for efficient routing around a network of networks without a central administrator: assume that there will be periodic roadblocks, and simply prepare to take a different route.

The Internet is increasingly congested. But by re-directing traffic to the pathways that are fully available, it is possible to get around all those traffic jams. And, actually, it’s possible to do today.

Find out more by reading the story of how Rosetta Stone improved performance for over 60% of their worldwide customers.

 

Better OTT Quality At Lower Cost? That Would Be Video Voodoo

According to the CTA, streaming video now claims as many subscribers as traditional Pay TV. Another study, from the Leichtman Research Group proposed that more households have streaming video than have a DVR. However accurate – or wonkily constructed – these statistics, what’s not up for grabs is that more people than ever are getting a big chunk of their video entertainment over the Web. Given the infamous AWS outage, this means that providers are constantly at risk of seeing their best-laid-plans laid low by someone’s else’s poor typing skills.

Resiliency isn’t a nice-to-have, it’s a necessity. Services that were knocked out last week owing to AWS’ challenges were, to some degree, lucky: they may have lost out on direct revenue, but their reputations took no real hit, because the core outage was so broadly reported. In other words, everyone knew the culprit was AWS. But it turns out that outages happen all the time – smaller, shorter, more localized ones, which don’t draw the attention of the global media, and which don’t supply a scapegoat. In those circumstances, a CDN glitch is invisible to the consumer, and is therefore not considered: when the consumer’s video doesn’t work, only the publisher is available to take the blame.

It’s for this reason that many video publishers that are Cedexis customers first start to look at breaking from the one-CDN-to-rule-them-all strategy, and look to diversify their delivery infrastructure. As often as not,this starts as simply adding a second provider: not so much as an equal partner, but as a safety outlet and backup. Openmix intelligently directs traffic, using a combination of community data (the 6 billion measurements we collect from web users around the world each day) and synthetic data (e.g. New Relic and CDN records). All of a sudden, event though outages don’t stop happening, they do stop being noticeable because they are simply routed around. Ops teams stop getting woken up in the middle of the night, Support teams stop getting sudden call spikes that overload the circuits, and PR teams stop having to work damage control.

But a funny thing happens once the outage distractions stop: there’s time catch a breath, and realize there’s more to this multi-CDN strategy than just solving a pain. When a video publisher can seamlessly route between more than one CDN, based on its ability to serve customers at an acceptable quality level, there is a natural economic opportunity to choose the best-cost option – in real time. Publishers can balance traffic based simply on per-Gig pricing; ensure that commits are met, but not exceeded until every bit of pre-paid bandwidth throughout the network is exhausted; and distribute sudden spikes to avoid surge pricing. Openmix users have reported seeing cost savings that reach low to mid double-digit percentages – while they are delivering a superior, more consistent, more reliable service to their users.

Call it Video Voodoo: it shouldn’t be possible to improve service reliability and reduce the cost of delivery…and yet, there it is. It turns out that eliminating a single point of failure introduces multiple points of efficiency. And, indeed, we’ve seen great results for companies that already have multiple CDN providers: simply avoiding overages on each CDN until all the commits are met can deliver returns that fundamentally change the economics of a streaming video service.

And changing the economics of streaming is fundamental to the next round of evolution in the industry. Netflix, the 800 pound gorilla, has turned over more than $20 billion in revenue the last three years, and generated less than half a billion in net margin, a 5% rate; Hulu (privately- and closely-held) is rumored to have racked up $1.8B in losses so far and still be generating red ink on some $2B in revenues. The bottom line is that delivering streaming video is expensive, for any number of reasons. Any engine that can measurably, predictably, and reliably eliminate cost is not just intriguing for streaming publishers – it is mandatory to at least explore.

How To Deliver Content for Free!

OK, fine, not for free per se, but using bandwidth that you’ve already paid for.

Now, the uninitiated might ask what’s the big deal – isn’t bandwidth essentially free at this point? And they’d have a point – the cost per Gigabyte of traffic moved across the Internet has dropped like a rock, consistently, for as long as anyone can remember. In fact, Dan Rayburn reported in 2016 seeing prices as low as ¼ of a penny per gigabyte. Sounds like a negligible cost, right?

As it turns out, no. As time has passed, the amount of traffic passing through the Internet has grown. This is particularly true for those delivering streaming video: consumers now turn up their nose at sub-broadcast quality resolutions, and expect at least an HD stream. To put this into context, moving from HD as a standard to 4K (which keeps threatening to take over) would result in the amount of traffic quadrupling. So while CDN prices per Gigabyte might drop 25% or so each year, a publisher delivering 400% the traffic is still looking at an increasingly large delivery bill.

It’s also worth pointing out that the cost of delivery relative to delivering video through a traditional network, such as cable or satellite is surprisingly high. An analysis by Redshift for the BBC clearly identifies the likely reality that, regardless of the ongoing reduction in per-terabyte pricing “IP service development spend is likely to increase as [the BBA] faces pressure to innovate”, meaning that online viewers will be consuming more than their fair share of the pie.

Take back control of your content…and your costs

So, the price of delivery is out of alignment with viewership, and is increasing in practical terms. What’s a streaming video provider to do?

Allow us to introduce Varnish Extend, a solution combining the powerful Varnish caching engine that is already part of delivering 25% of the world’s websites; and Openmix, the real-time user-driven predictive load balancing system that uses billions of user measurements a day to direct traffic to the best pathway.

Cedexis and Varnish have both found that the move to the Cloud left a lot of broadcasters as well as OTT providers with unused bandwidth available on premise.Bymaking it easy to transform an existing data-center into a private CDN Point of Presence (PoP), Varnish Extend empowers companies to easily make the most out of all the bandwidth they have paid for, by setting up Varnish nodes on premise, or on cloud instances that offer lower operational costs than using CDN bandwidth.

This is especially valuable for broadcasters/service providers whose service is limited to one country: the global coverage of a CDN may be overkill, when the same quality of experience can be delivered by simply establishing POPs in strategic locations in-country.

Unlike committing to an all-CDN environment, using a private CDN infrastructure like Varnish Extend supports scaling to meet business needs – costs are based on server instances and decisions, not on the amount of traffic delivered. So as consumer demands grow, pushing for greater quality, the additional traffic doesn’t push delivery costs over the edge of sanity.

A global server load balancer like Openmix automatically checks available bandwidth on each Varnish node as well as each CDN, along with each platform’s performance in real-time. Openmix also uses information from the Radar real user measurement community to understand the state of the Internet worldwide and make smart routing decisions.

Your own private CDN – in a matter of hours

Understanding the health of both the private CDN and the broader Internet makes it a snap to dynamically switch end-users between Varnish nodes and CDNs, ensuring that cost containment doesn’t come at the expense of customer experience – simply establish a baseline of acceptable quality, then allow Openmix to direct traffic to the most cost-effective route that will still deliver on quality.

Implementing Varnish Extend is surprisingly simple (some customers have implemented their private CDN in as little as four hours):

  1. Deploy Varnish Plus nodes within existing data-centre or on public cloud,
  2. Configure Cedexis Openmix to leverage these nodes as well as existing CDNs.
  3. Result: End-users are automatically routed to the best delivery node based on performance, costs, etc.

Learn in detail how to implement Varnish Extend

Sign up for Varnish Software – Cedexis Summit in NYC

References/Recommended Reading:

Mobile Video is Devouring the Internet

In late 2009 – fully two years after the introduction of the extraordinary Apple iPhone – mobile was barely discernible on any measurement of total Internet traffic. By late 2016, it finally exceeded desktop traffic volume. In a terrifyingly short period of time, mobile Internet consumption moved from an also-ran to a behemoth, leaving behind the husks of marketing recommendations to “move to Web 2.0” and to “design for Mobile First”. And along the way, Apple encouraged us to buy into the concept that the future (of TV at least) is apps.

Unsurprisingly, the key driver of all this traffic is – as it always is – video. One in every three mobile device owners watches videos of at least 5 minutes’ duration, which is generally considered the point at which the user has moved from short-form, likely user-generated, content, to premium video (think: TV shows and movies). And once viewers pass the 5minute mark, it’s a tiny step to full-length, studio-developed content, which is a crazy bandwidth hog.  Consider that video is expected to represent fully 75% of all mobile traffic by 2020 – when it was just 55% in 2015.


As consumers get more interested in video, producers aren’t slowing down. By 2020, it is estimated that it would take an individual fully 5 million years to watch the video being published and made available in just a month. And while consumer demand varies around the world – 72% of Thailand’s mobile traffic is video, for instance, versus just 41% in the United States – the reality is that, without some help, the mobile Web is going to be straining under the weight of near-unlimited video consumption.

What we know is that, hungry as they are for content, streaming video consumers are fickle and impatient. Akamai demonstrated years ago the 2-second rule: if a requested piece of content isn’t available in under 2 seconds, Internet users simply move on to the next thing. And numerous studies have shown definitively that when re-buffering (the dreaded pause in playback while the viewing device downloads the next section of the video) exceeds just 1% of viewing time, audience engagement collapses, resulting in dwindling opportunities to monetize content that was expensive to acquire, and can be equally costly to deliver.

How big of a problem is network congestion? It’s true that big, public, embarrassing outages across CDNs or ISPs are now quite rare. However, when we studied the network patterns of one of our customers, we found that what we call micro-outages (outages lasting 5 minutes or less) happen literally hundreds to thousands of times a day. That single customer was looking at some 600,000 minutes of direct lost viewing time per month – and when you consider how long each customer might have stayed, and their decreased inclination to return in the future, that number likely translates to several million minutes of indirectly lost minutes.

While mobile viewers are more likely to watch their content through an app (48% of all mobile Internet users) than a browser (18%), they still receive the content through the chaotic maelstrom of a network that is the Internet. As such, providers have to work out the best pathways to use to get the content there, and to ensure that the stream will have consistency over time so that it doesn’t fall prey to the buffering bug.

Most providers use stats and analysis to work out the right pathways – so they can look at how various CDN/ISP combos are working, and pick the one that is delivering the best experience. Strikingly, though, they often have to make routing decisions for audience members who are in geographical locations that aren’t currently in play, which means choosing a pathway without any recent input on which is going to be the best pathway – this is literally gambling with the experience of each viewer. What is needed is something predictive: something that will help the provider to know the right pathway the first time they have to choose.

This is where the Radar Community comes in: by monitoring, tracking, and analyzing the activity of billions of Internet interactions every day, the community knows which pathways are at peak health, and which need a bit of a breather before getting back to full speed. So, when using Openmix to intelligently route traffic, the Radar community data provides the confidence that every decision is based on real-time, real-user data – even when, for a given provider, they are delivering to a location that has been sitting dormant.

Mobile video is devouring the Web, and will continue to do so, as consumers prefer their content to move, dance, and sing. Predictively re-routing traffic in real-time so that it circumvents the thousands of micro-outages that plague the Internet every day means never gambling with the experience of users, staying ahead of the challenges that congestion can bring, and building the sustainable businesses that will dominate the new world of streaming video.

How to Make Cloud Pay Its Own Way

Rightscale came out with a wonderful report on the state of the cloud industry, and we learned some important new things:

  • 77% of organizations are at least exploring private cloud implementations
  • 82% of enterprises are executing a hybrid cloud strategy
  • 26% of respondents are now listing cost as significant challenge – ironically, given the importance of cost-cutting in the early growth of cloud services

The growth in hybrid cloud adoption is particularly striking: by Rightscale’s count, only 6% of companies are exclusively looking at private cloud,  18% are exclusively looking at public cloud , while a full 71% have a toe dipped into each pool.

Meanwhile, Cisco estimates that two thirds of all Internet traffic will traverse at least one content delivery network by 2020 – which tends to imply that most organizations are, right now, invested in getting the most out of some combination of private cloud, public cloud, CDN, and, presumably, physically-managed data center.

Fundamentally, there are a few core ways that we see organizations using this market basket of delivery pathways – and, naturally, our Openmix global server load balancer – to better serve their customers, and to protect their economics as demand grows, apparently insatiable. The core strategies are:

  1. Balance CDNs, offload to origin. For web-centric businesses, delivering content across the Internet is fundamental to their success (possibly their survival), so they tend to rely upon one or more CDNs to get content to their users effectively. Over time, they tend to expand the number of CDN relationships, in order to improve quality across geographies, and to make the most of pricing differences between providers. Once they get this set to equilibrium, they discover that there is unused capacity at origin (or within a private or public cloud instance) to which they can offload traffic, maximizing the return they get on committed capacity, and minimizing unnecessary spend.
  2. Balance clouds, offload to CDN. For businesses that are highly geographically-focused, it is often more effective to create what is essentially a self-managed CDN, establishing PoPs through cloud providers in population centers where their customers actually originate. Even the most robust internally-managed system, however, is subject to traffic spikes that are way beyond expectations (and committed throughput limits), and so these companies build relationships with CDNs in which excess traffic is offloaded at peak times.
  3. Balance Hybrid Cloud. Organizations at the far right of Rightscale’s cloud maturity scale (in their words, the Cloud Explorers and Cloud Focused) are starting to view each of the delivery options not as wildly distinct options, but merely as similar-if-different-looking cogs in the machine. As such, they look at load and cost balancing through a pragmatic prism, in which each user is simply served through the lowest cost provider, so long as it can pass a pre-defined quality bar (a specified latency rate, for instance, or a throughput level). By shifting the mindset away from ‘primary’ and ‘offload’ networks, organizations are able to build strategies that optimize for both cost and quality.

Of course, to balance traffic across a heterogeneous set of delivery networks (and provider types), while adjusting for a combination of both economic and quality of service metrics, requires three things:

  1. Real-time visibility of the state of the Internet beyond the view of the individual publisher, in order to be able to evaluate Quality of Service levels prior to selecting a delivery provider
  2. Real-time visibility into the current economic situation with each contracted provider: which offers the lowest cost option, based on unit pricing, contract commitments, and so forth
  3. Real-time traffic routing, which takes the data inputs, compares them to the unique requirements of the requesting publisher, and seamlessly directs traffic along the right pathway

Not an easy recipe, perhaps, but when found, it results in the opportunity to apply sophisticated algorithms to delivery – in effect to exercise a Wall Street-level arbitrage approach, which results in a combination of delighted customers, and reduced infrastructure costs.

Or, put another way, the opportunity to make your hybrid cloud strategy pay for itself – and more.

To find out more about real-time predictive traffic routing, please take a look around our Openmix pages,  read about how to deliver 100% availability with a Hybrid CDN architecture, and visit our Github repository to see how easy it is to build your own real-time load balancing algorithm.

Make Mobile Video Stunning with Smart Load Balancing

If there’s one thing about which there is never an argument it’s this: streaming video consumers never want to be reminded that they’re on the Internet. They want their content to start quickly, play smoothly and uninterrupted, and be visually indistinguishable from traditional TV and movies. Meanwhile, the majority of consumers in the USA (and likely a similar proportion worldwide) prefer to consume their video on mobile devices. And as if that wasn’t challenging enough, there are now suggestions that live video consumption will grow – according to Variety by as much as 39 times! That seems crazy until you consider that Cisco predicted video would represent 82% of all consumer Internet traffic by 2020.

It’s no surprise that congestion can result in diminished viewing quality, leading over 50% of all consumers to, at some point, experience buffer rage from the frustration of not being able to play their show.

Here’s what’s crazy: there’s tons of bandwidth out there – but it’s stunningly hard to control.

The Internet is a best-efforts environment, over which even the most effective Ops teams can wield only so much control, because so much of it is either resident with another team, or is simply somewhere in the amorphous ‘cloud’.  While many savvy teams have sought to solve the problem by working with a Content Delivery Network (CDN), the sheer growth in traffic has meant that some CDNs are now dealing with as much traffic as the whole Internet transferred just a few years ago…and are themselves now subject to their own congestion and outage challenges. For this reason, plenty of organizations now contract with multiple CDNs, as well as placing their own virtual caching servers in public clouds, and even deploying their own bare-metal CDNs in data centers where their audiences are centered.

With all these great options for delivering content, Ops teams must make real-time decisions on how to balance the traffic across them all. The classic approaches to load balancing have been (with many thanks to Nginx):

  • Availability – Any servers that cannot be reached are automatically removed from the list of options (this prevents total link failure).
  • Round Robin – Requests are distributed across the group of servers sequentially.
  • Least Connections – A new request is sent to the server with the fewest current connections to clients. The relative computing capacity of each server is factored into determining which one has the least connections.
  • IP Hash – The IP address of the client is used to determine which server receives the request.

You might notice something each of those has in common: they all focus on the health of the system, not on the quality of the experience actually being had by the end user. Anything that balances based on availability tends to be driven by what is known as synthetic monitoring, which is essentially one computer checking another computer is available.

But we all know that just because a service is available doesn’t mean that it is performing to consumer expectations.

That’s why the new generation of Global Server Load Balancer(GSLB) solutions goes a step further. Today’s GSLB uses a range of inputs, including

  • Synthetic monitoring – to ensure servers are still up and running
  • Community Real User Measurements – a range of inputs from actual customers of a broad range of providers, aggregated, and used to create a virtual map of the Internet
  • Local Real User Measurements – inputs from actual customers of the provider’s own service
  • Integrated 3rd party measurements – including cost bases and total traffic delivered for individual delivery partners, used to balance traffic based not just on quality, but also on cost

Combined, these data sources allow video streaming companies not only to guarantee availability, but also to tune their total network for quality, and to optimize within that for cost. Or put another way – streaming video providers can now confidently deliver the quality of experience consumers expect and demand, without breaking the bank to do it.

When you know that you are running across the delivery pathway with the highest quality metrics, at the lowest cost, based on the actual experience of your users – that’s a stunning result. And it’s only possible with smart load balancing, combining traditional synthetic monitoring with the real-time feedback of users around the world, and the 3rd party data you use to run your business.

If you’d like to find out more about smart load balancing, keep looking around our site. And if you’re going to be at Mobile World Congress at the end of the month, make an appointment to meet with us there so we can show you smart load balancing in real life.

How To Prevent Network Fails in The Gaming Space

gaming-fail

When two Las Vegas Strip casinos lost power in early January owing to high winds, it represented a perfect metaphor for how much gaming businesses rely on something that is out of their direct control: the Internet.

Gaming continues to rely heavily on both large file downloads (for games sent to gaming consoles, for instance), and synchronous or near-synchronous communications (to enable multi-player action). When some element of the Internet goes down, or becomes so congested as to feel like it’s not working, the whole gaming experience can fall flat on its face – despite the provider having done everything in their power to guarantee a great experience. Meanwhile, the cost to provide great service continues to rise.

Well, nearly everything.

The Internet has evolved, and, while CDNs offer great value in reducing the consumer experience, it simply isn’t possible to serve a global audience with just a single CDN partner. Many Cedexis customers have as many as six to ten  CDNs, serving specific customer segments. By contrast, our first conversations with customers include them telling us that they are experiencing frequent outages and slowdowns, despite working with some of the best CDN providers in the world.

Here’s a number for you: 303. That’s the number of extra hours of downtime customers in Russia suffer using the 10th highest ranked CDN versus using a combination of providers, balanced with Cedexis Openmix (you can take a look at this by heading to our CDN and Cloud Performance Reports page).

Here are five specific hints for avoiding network fails:

  1. Know Your Experience: it’s easy to get caught up in server load, packet loss, and other technical terms – but it’s the human experience your players receive that defines their allegiance to your service. Your best indication that you’re meeting and/or exceeding customer expectations is by using Real User Measurements (RUM). Knowing what your players expect is a necessary data point for building something better.
  2. Know Your Calendar: every app that needs downloads will have scheduled updates. On those days, bandwidth needs will inevitably be higher, and even a distributed infrastructure that has been working fine up until now will be put to the test. If you have an upcoming release, this is the perfect time to bring a new CDN or two into the fold, and validate the impact of having extra partners to share the load.
  3. Know Your Location: every business needs to expand geographically – but every CDN isn’t equally robust in every location. Use a tool like Radar to evaluate your current partners’ results in new geographics – and take the opportunity to work with a local partner, who may be able to deliver better results at lower prices for a defined audience set.
  4. Know Your Capacity: many companies overprovision their datacenters, and actually have computing power and bandwidth to spare. If yours is one of those companies, consider introducing your own modest DIY CDN – that way you can get the most out of the technology you already have
  5. Know Your Numbers: every penny spent on delivery is a penny unavailable for other purposes. Look at your delivery costs, and ask whether there aren’t economic efficiencies to be found by working with more providers – lower base prices, say, or the option to offload peak traffic to avoid the always-maddening burst charges.

For more hints, explore the Cedexis website, or drop us a line.

And don’t forget to meet us at ICE Totally Gaming in London February 7 – 9.

Ice totally Gaming_signature - small